

Product: 70053CH ☑

4 PAIR AES/EBU, 26AWG, ISTP, LSZH-C

Product Description

DIGITAL AUDIO 4 PAIR AES/EBU, 26AWG/0.14mm², ISTP, LSZH-C

Technical Specifications

Product Overview

Suitable Applications:

Digital multi-modulation cable used in professional studios for the transmission of analogue and digital audio signals; Designed to meet the requirements of the AES/EBU specification; Resistance to flame propagation according to IEC 60332-3-24

Physical Characteristics (Overall)

Conductor

AWG	Stranding	Material		Cross Section	Construction n x D
26	7x34	BC-OFHC - Oxygen-Free Bare Copper (High Conductivity		0.14 mm ²	7x0.15 mm
Conductor Count: 8					
Total Number of Pairs: 4					

Insulation

Туре	Material	Nominal Diameter	Diameter +/- Tolerance
Insulation	PE - Polyethylene (Foam)	1.10 mm	0.03 mm

Color Chart

Number	Color	
Pair 1 t/m 4	White & Blue	

Inner Shield Material

Table Notes:		Aluminun	n inside		
Bi-Laminate (Alum+Poly)	Beldfoil®	100%	Stranded tinned copper	26	7x0.16 mm
Material	Material Trade Name	Coverage [%]	Drainwire Material	Drainwire AWG	Drainwire Construction n x D

Inner Jacket Material

	Material	Nominal Diameter	Diameter +/- Tolerance	
LS	SZH - Low Smoke Zero Halogen (Flame Retardant)	2.90 mm	0.10 mm	
Та	Table Notes: Elements are numbered for identification			

Outer Shield Material

Type	Material	Coverage [%]	Drainwire Material	Drainwire AWG	Drainwire Construction n x D
Tape	Bi-Laminate (Alum+Poly)	100%	TC - Tinned Copper	26	7x0.16 mm

Outer Jacket Material

Material	Nominal Diameter	Nominal Wall Thickness
LSZH - Low Smoke Zero Halogen (Flame Retardant)	9.80 mm	1.20 mm

Construction and Dimensions

Cabling

Description Filler

1 filler + 4 pairs Polypropylene			
Min Elongation at Breakof Jacket:	125 %		
Min Tensile Strength of Jacket:	9 MPa		

Electrical Characteristics

Conductor DCR

Nominal Conductor DCR 134.0 Ohm/km

Capacitance

Nom. Capacitance Conductor to Conductor 40 pF/m

Impedance

Frequency [MHz]	Nominal Characteristic Impedance	Nominal Characteristic Tolerance
0.1 - 6	110 Ohm	+/- 15 Ohm

Delay

Nominal Velocity of Propagation (VP) [%] 80%

Temperature Range

Other Temp Range:	-30 to +70 °C	

Mechanical Characteristics

Min Bend Radius During Installation:	98 mm
Min Bend Radius During Operation:	147 mm

Standards

CENELEC Compliance:	EN 50290-2-20	

Applicable Environmental and Other Programs

Environmental Space:	Indoor
EU RoHS Compliance Date (yyyy-mm-dd):	2013-12-18

Flammability, LS0H, Toxicity Testing

IEC Flammability:	IEC 60332-3-24
IEC 60754-1 (EN50267-1)- Halogen Amount:	Zero
IEC 60754-2 (EN50267-2)- Halogen Acid Gas Amount - Max. Conductivity:	2.5 µS/mm
IEC 60754-2 (EN50267-2)- Halogen Acid Gas Amount - Min. pH:	4.3
IEC 61034-2 (EN 61034-2) (VDE 0482-1034) - Smoke Density Min. Transmittance:	60%

Part Number

Variants

Item #	Color	Putup Type	Length	EAN
70053CH.00200	Violet	Reel	200 m	8719605144621
70053CH.00500	Violet	Reel	500 m	8719605010193

History

Update and Revision:	Revision Number: 0.158 Revision Date: 12-17-2020	

© 2021 Belden, Inc

All Rights Reserved.

Although Belden makes every reasonable effort to ensure their accuracy at the time of this publication, information and specifications described here in are subject to error or omission and to change without notice, and the listing of such information and specifications does not ensure product availability.

Belden provides the information and specifications herein on an "ASIS" basis, with no representations or warranties, whether express, statutory or implied. In no event will Belden be liable for any damages (including consequential, indirect, incidental, special, punitive, or exemplary damages) whatsoever, even if Belden has been advised of the possibility of such damages, whether in an action under contract, negligence or any other theory, arising out of or in connection with the use, or inability to use, the information or specifications described herein.

All sales of Belden products are subject to Belden's standard terms and conditions of sale.

Belden believes this product to be in compliance with all applicable environmental programs as listed in the data sheet. The information provided is correct to the best of Belden's knowledge, information and belief at the date of its publication. This information is designed only as a general guide for the safe handling, storage, and any other operation of the product itself or the one that it becomes a part of. The Product

Disclosure is not to be considered a warranty or quality specification. I regulations based on their individual usage of the product.	Regulatory information is for guidance purposes onl	y. Product users are responsible for determining the applic	ability of legislation and